Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> We propose a relaxation mechanism for the initial misalignment angle of the pre-inflationary QCD axion with a large decay constant. The proposal addresses the challenges posed to the axion dark matter scenario by an overabundance of axions overclosing the Universe, as well as by isocurvature constraints. Many state-of-the-art experiments are searching for QCD axion dark matter with a decay constant as large as 1016GeV, motivating the need for a theoretical framework such as ours. In our model, hidden sector magnetic monopoles generated in the early Universe give the axion a large mass via the Witten effect, causing early oscillations that reduce the misalignment angle and axion abundance. As the hidden gauge symmetry breaks, its monopoles confine via cosmic strings, dissipating energy into the Standard Model and leading to monopole-antimonopole annihilation. This removes the monopole-induced mass, leaving only the standard QCD term. We consider the symmetry breaking pattern of SU(2)′→ U(1)′→ 1, leading to monopole and string formation respectively. We calculate the monopole abundance, their interactions with the axion field, and the necessary conditions for monopole-induced axion oscillations, while accounting for UV instanton effects. We present three model variations based on different symmetry breaking scales and show that they can accommodate an axion decay constant of up to 1016GeV with an inflationary scale of 1015GeV. The required alignment between monopole-induced and QCD axion potentials is achieved through a modest Nelson-Barr mechanism, avoiding overclosure without anthropic reasoning.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available February 6, 2026
-
A<sc>bstract</sc> We discuss models of ultralight scalar Dark Matter (DM) with linear and quadratic couplings to the Standard Model (SM). In addition to studying the phenomenology of linear and quadratic interactions separately, we examine their interplay. We review the different experiments that can probe such interactions and present the current and expected future bounds on the parameter space. In particular, we discuss the scalar field solution presented in [A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik and P. Wolf, Phys.Rev.D 98 (2018) 6, 064051], and extend it to theories that capture both the linear and the quadratic couplings of the Dark Matter (DM) field to the Standard Model (SM). Furthermore, we discuss the theoretical aspects and the corresponding challenges for natural models in which the quadratic interactions are of phenomenological importance.more » « less
An official website of the United States government
